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Abstract-The stability of a vertical cylindrical column of water with the horizontal bottom boundary 
maintained at 0°C and the temperature of the top boundary varying between 4 and 8°C is considered. A 
weakly non-linear analysis shows that the bifurcation is either supercritical or subcritical depending upon 
the values of two parameters: the aspect ratio of the cylinder (height/radius) which is varied between 2 
and 4, and the Penetration parameter p defined as the ratio of the whole height over the height of the 4’C 
isotherm. For a given value of the aspect ratio, the bifurcation is supercritical when the whole height is 
unstable (p = I) and becomes subcritical above a particular value of p when penetration occurs (p > I). 

1. INTRODUCTION 

PEXETRATIVE convection occurs when an unstably 
stratified layer of fluid is bounded either above or 
below by a stably stratified layer. This aris:: yhen 
considering the melting of an ice layer or the freezing 
of a water layer. Because of the density maximum of 
water near 4”C, the water below the 4°C isotherm is 
unstable. The onset of convection in a horizontal 
water layer near its density extremum has been widely 
studied. Veronis [l] considered the temperature range 
from 0 to 8’C where the equation of state is accurately 
approximated by a parabolic density-temperature 
relation. Merker et al. [2] assuming a fifth-order poly- 
nomial for the density-temperature relation showed 
that the critical Rayleigh numbers calculated with the 
simple parabolic relation are about 10% too large. 
Gebhart and Mollendorf [3] have also developed a 
density-temperature relation valid for both pure and 
saline water. 

Thermal instability in a fluid with a non-linear den- 
sity profile arises in many fields of geophysical fluid 
dynamics. It takes place in the earth’s mantle, its 
atmosphere, lakes and oceans. It also occurs in the 
outer layer of the sun. Recently, as a model of pene- 
trative convection appropriate to geophysical appli- 
cations, Matthews [4] analysed the stability of a cubic 
temperature profile. He showed, using a weakly non- 
linear analysis, that the bifurcation is supercritical, 
this result being in contrast with the subcritical bifur- 
cation found earlier by Veronis [ 1) for water between 0 
and 8°C. This leads him to distinguish between a non- 
linear density profile produced by a non-linear equa- 
tion of state with a linear temperature profile, and a 
non-linear density profile produced by a linear equation 
of state with a non-linear temperature profile. How- 
ever, this difference cannot be a sufficient criterion 
to determine a priori the nature of the bifurcation. 

Transition to finite amplitude convection also 
appears as a result of numerical calculations achieved 
for the ice-water system confined between free upper 
and lower surfaces of infinite horizontal extent [S, 
61. When the fluid is bounded by no-slip horizontal 
surfaces with a fixed-heat-flux thermal boundary con- 
dition, Roberts [7] has shown that simplifications 
occur in the analytical treatment enabling predictions 
to be made about the extent of subcriticality. 

An hysteretic transition near the critical Rayleigh 
number has been observed in experiments with liquid 
helium which has a density maximum just above the 
superfluid transition temperature [S]. 

The aim of the present analysis is to reconsider 
the ice-water system where a subcritical bifurcation 
is expected for water between 0 and 8°C [I]. By varying 
the temperature of the horizontal top boundary from 
4 to 8°C it will be shown that the bifurcation can be 
either supercritical or subcritical following the relative 
height of the unstable layer. We have considered a 
vertical cylindrical column of water because exper- 
iments have already been performed in this geometry 
[9, lo] and to see how finite size effects affect the 
nature of the bifurcation. Moreover, in this geometry 
the horizontal structure of the convective flow can be 
considerably simplified by a suitable choice of the 
lateral vertical boundary conditions that determine 
the horizontal wave numbers (radial and azimuthal). 
Therefore, in determining the onset of convection we 
avoid minimization of the Rayleigh number with 
respect to the horizontal wave number. 

2. FORMULATION OF THE PROBLEM 

Consider a vertical cylinder of radius R and height 
h filled with water. The top and bottom horizontal 
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NOMENCLATURE 

integral of product of three Bessel 
functions 
height of maximum density 
coefficients in the denominator of the 
expression for R? 

derivative with respect to the vertical 
variable, d/d: 
unit vector in the upward vertical 
direction 
combination of the double products 
of Bessel functions 
acceleration due to gravity 
height of the cylinder 

AT temperature difference between T,,, 
and To 

b” 

convective velocity, (u, c, IF) 
nth term in the perturbative expansion 
of velocity 

.r new variable proportional to the 
radial variable 

x, x* vertical profile of the temperature and 
its adjoint 

Y, Y* vertical profile of the velocity 
potential and its adjoint 

Z Laplacian of I’. 

convective pressure 
Bessel function of order n 

Greek symbols 

radial wave number 
$0 0) n ?%I, volume integrals of the non-linear 

angular wave number 
terms,j= I,3 

cylindrical polar coordinates (radial, B thermal expansion coefficient 

azimuthal, vertical) 
s differential operator 

radius of the cylinder A” horizontal Laplacian 

Rayleigh number 
; 

expansion parameter 

critical Rayleigh number of the 0th 
convective temperature 

azimuthal mode and ith vertical Q, ttth term in the expansion of 0 

mode 
K thermal diffusivity 

second term in the s-expati’si& of the 
i aspect ratio of the cylinder. h/R 

Rayleigh number /1 penetration parameter, h, d 

coefficients in the polynomial 
\’ kinematic viscosity 

expansion of Rz in inverse power of 
Prandtl number. P/K 

the Prandtl number, j = I, 3 ; velocity potential 

time 0, rtth term in the expansion of 4 

temperature Q(=) linear function of -_. 

temperature at the bottom and the top 
of the cylinder Other symbol 
temperature of maximum density V gradient. 

boundaries are held at different temperatures, T, and 
T,,. The physical situation to be described corresponds 
to To = OK and 8C >, T, 2 T,,,. In this range of tem- 
perature the viscosity v and the thermal diffusivity K 

are assumed to be constant. The density p is a quad- 
ratic function of the temperature 

P = PJ -BP- TnJ'l. 

The temperature T,,, for which the density maximum 
occurs is located at a height d with 0 c d < h. Then 
the temperature distribution in the conductive state is 

T= T,+(T,-To);, O<z<h. (1) 

Also we shall denote by ATthe temperature difference 
T,,,- To. In a vertical cylinder it is convenient to use 
R as a length scale and AT(R/d) as a temperature 
scale. Nondimensionalizing the velocity with K,‘R and 
the time with R2/x, the equations for the perturbed 

velocity u = (u, t’, w), pressure p and temperature 0 
become 

i(g+“*Vu)= -Vp+Ra(:r-i)&+V’u (2) 

(; +,.VS) = V%-,, 

where e is the unit vector in the upward :-direction, 
0 = V/K is the Prandtl number and Ra the Rayleigh 
number given by 

Ra = 
2j3gAT2R’ 

wid ’ (4) 

In the definition above the Rayleigh number is con- 
structed with the height of the unstable part [ 11 rather 
than with the height of the cylinder [2]. Due to the 
finite geometry and the density anomaly, two other 



parameters are required to describe the convective v&us paper [IO]. Non-trivial solutions exist for certain 

state : the aspect ratio i. = h/R and p = h/d. values of the Rayleigh number &I’“.~‘, where n char- 

We assume that the top and bottom ho~zontal acterizes the horizontal structure (both azimuthal and 

boundaries are isothermal and rigid surfaces, leading radial) and i the vertical structure. The results for 

to the boundary conditions different values of p and i (Tables l-3), show that 

$=u=t?= w=O on z=O,i, O,<r<l. (5) 
the critical mode always corresponds to an azimuthal 
number n = 1 associated with a radial wave number 

The lateral boundary is assumed to be a perfectiy k , = 1.841. The vertical structure of the critical mode 

insulating surface on which the tangential vorticity is (i = 1) is made of one principal cell with sometimes a 

zero. The resulting boundary conditions are small counter cell in the upper part of the cylinder 

de @rr,) a,v 
when p > 1.5 (Figs. 1 and 2). To each eigenvalue 

-_=n 
Sr 

=---=-=O on r=l, O<z<E.. 
dr dr 

Rat”*” corresponds an eigenvector ( Y,,, X,,) and conse- 

(61 
quently the three components of velocity and tem- 
perature are written as follows : 

Following Rosenblat [l l] these boundary conditions 
have been chosen in order to simplify the math- 
ematical analysis and they seem satisfactory to pro- 
vide a qualitative inte~retation of the realistic physi- 
cal behaviour. 

u,, = k,cosncp4(k,r)D Y,Jz) 

u,,, = -n sin ny, J,(k,r)D Y&) 

w,,~ = ki cos nrp J,(k,r) Y&f 

eai cosncp 

3. LINEAR STABILITY It has already been shown [IO] that for large values 
of the aspect ratio (2 -+ co), an asymptotic form of 

Assuming the validity of the principle of exchange the vertical profiles Y,,(z) and X,Jz) can be found in 
of stabilities, the linearization of system (2) and (3) is terms of Airy functions. 
obtained by setting the right-hand sides equal to zero. 
As a result we obtain 

Table I. Critical values of the Rayleigh number k&r’“.” as a 

o= -VpSRa :z-l 
( > 

function of p for the angular modes n = 1.2.0 and the first 
OefV’u - - (7) three vertical modes i = 1.2,3. The value of the aspect ratio 

is1=2 

0 = v2e-tv. (8) P i Ra’ I.0 Ra’ 1.1) Ro’O.” 

Boundary conditions (6) allow the search for solu- 1 1 I IO.26 216.63 376.03 
tions with no vertical vorticity. Thus we introduce the 2 1233.44 1461.13 

velocity potential C# such that u = V x V x 4e. More- 3 5730.88 540 1.98 

over, separation of variables is possible and we put I.1 I 121.95 231.93 410.17 
2 1427.89 1686.84 

#(r, 9,:) = cos nrp f,(kr) Y(z) (9) 3 6863.81 6460.05 

efr, up, Z) = cos flcp .fnfkr)q~) w 
I.2 

: 
136.26 263.18 449.51 

1702.72 1996.33 

where tr = 0, 1, 2,. . . is the azimuthal wave number, 3 8739.01 8157.36 

J, the Bessel function of order n, and k is determined 2 1 588.38 748.61 1049.78 

from the equation J:(k) = 0. Since we are interested 2 12 976.58 ! I 566.75 

in cylinders with an aspect ratio i. > 1 the radial struc- 
ture of the critical mode is expected to be that cor- 
responding to the first positive zero of I:, as it occurs Table 2. Critical values of the Rayleigh number f&r’“.‘) as a 

when convection takes place in the whole height. 
function of p for the angular modes n = 1,2,0 and the first 

Acting with e + V x V x on equation (7) the system 
three vertical modes i = 1,2,3. The value of the aspect ratio 

is 1. = 3 
(7) and (8) reduces to a pair of ordinary differential 
equations P i f&+ Ui &+w Ro’O.” 

( > 
$-I 

I 1 35.03 123.86 253.05 
(D’-kl)‘Y-Ra X= 0 Cl) 2 370.54 583.39 

3 1126.32 1391.42 

(D2-k?)X--k’Y = 0 (12) 
1.2 1 42.77 145.54 290.00 

2 499.27 763.82 
subject to the boundary conditions 3 1681.11 2027.8 1 

1.4 I 54.09 172.60 333.02 
Y=DY=X=O at r=O,i. (131 2 720.99 1031.91 

where D = did:. The system of equations (I l)-(13) 
3 2933.93 3226.49 

was integrated numerically using a fourth-order 
2 I 133.08 295.55 507.66 

2 2287.60 2611.31 
Runge-Kutta method which was described in a pre- 

Transition from subcritical to supercritical bifurcation 2617 
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Table 3. Critical values of the Rayleigh number Ra’“.” as a 
function of p for the angular modes n = I, 2.0 and the first 
three vertical modes i = 1.2.3. The value of the aspect ratio 

is1=4 

P i Ra’ I.0 &‘h, &$O.” 

I I 21.14 97.86 211.40 
2 2 13.28 389.87 
3 479.06 722.62 

1.2 I 25.36 III.39 235.01 
2 216.50 484.69 
3 692.01 999.37 

1.4 I 31.04 126.91 261.02 
2 367.05 606.4 I 
3 1073.88 1419.73 

I.6 I 38.62 144.69 289.76 
2 490.32 760.68 
3 1663.25 2020.55 

1.8 I 48.55 165.06 321.63 
2 655.97 956.29 
3 2552.89 2872.14 

2 I 61.25 188.47 357.06 
2 878. IO 1204.42 
3 3871.32 4070.27 

4. NON-LINEAR ANALYSIS 

When the solutions of the linear problem cannot be 
expressed in terms of analytical functions, the non- 
linear problem can always be solved by a standard 
perturbation method. Nevertheless a Galerkin pro- 
cedure is sometimes preferred [l I]. The selection of a 
minimal set of modes as a basis of the expansion in 
the Galerkin formulation is rather arbitrary and we 
choose to present the perturbation method, though 
in our case both methods give identical results. The 
unknown functions are expanded in power series as 

u = &U,+&2U~+E’U~+ “’ (14) 

I9 = &O,+&~@~+&‘OJ+ .‘. (15) 

4 = &@,+&2Q2+&3@3+ ‘.. (16) 

Ra = Ra”.“+&2R2+&4R,+ . (17) 

whereU, = (u,,,~,,, )r, ,) and 0, = O,, are solutions 
of the linear problem corresponding to the critical 
Rayleigh number Ra(‘.‘j. In the Rayleigh number 
expansion the term proportional to E has been omitted 

(4 tb) 

FIG. 1. Eigenfunctions Y,,(c) for the aspect ratio i = 2. (a) n = I, i = 1 : -, p = I ; -+-. P = 2. 
(b) p = I : -, n = 2, i = I ; -a--, n = 2, i = 2. 

4.2 
0.0 0.2 0.6 0.8 1.0 

7. L 

(a) (b) 

FIG. 2. Eigenfunctions Y.,(z) for the aspect ratio A = 4. (a) n = 1 : ---, P = 1 ; -+--, P = 1.5; 
-_0-,p=~.(b)n=2:-,p= I ;-+---,p= 1.5;--_O-,~=2. 
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because a transcritical bifurcation is excluded when [l f] di 1 [12]. In the present case it will be shown 

the critical mode is the diametrically antisymmetrical that at least two modes are necessary to get accurate 
one (n = 1). In Marangoni convection Rosenblat et results. 
al. [12] have shown that a transcritical bifurcation is Since the linear problem (1 l)-( 13) is not selfadjoint 

expected when the mode is the axisymmetrical solutions Yz and X: of the adjoint 
one (n = 0). In cylindrical geometry, the angular problem 
mode n = 0 has the same behaviour hexagonal 
pattern in an horizontal layer. A summary of 

(D’-kl)*Y*+X* 

principal types of bifurcation 
Benjamin [13]. The expansions above, 

(D’-k*)X*+Rak’ 
( > 

$4 Y* = 0 (26) 

equations (14)-( 17), are substituted into the non-lin- 
ear system Y*=DY*=X*=O at z=O.i. (27) 

+V)n = V4AH+& fz- 1 
(. ) 

This system is integrated numerically using a Runge- 
AHe (18) Kutta method. Multiplying equations (20) and (21) 

by the adjoint eigenfunctions (&0,*,) for respectively 

u-m = (19) 
n = 0,2 and 

~~.:s.(u,.v)u,+e~(u,.v)O, 
> (28) 

;&(U,*V)U, = V4AH0,-Ra”~” AH& where 

(20) 
d,, = (~n:n(z)e,i). (29) 

U,*VO, = V’02+AHQ2 (21) 
To simplify we have introduced the notation 
n(r) = (ptz/j.- 1). The angular brackets denote inte- 

where A,, is the horizontal Laplacian iti -iolar gration over the volume 0 < r < 1. 0 < cp c 2n, 

coordinates 0 < z < 1. It is convenient to introduce the following 
quantities : 

(22) 
~$1 = 

Explicit expressions of the non-linear terms on the 
( 
~~.:a.(u,,.v)u,,+e~(u,,.v)e,, 

> 
. 

left-hand side of equations (20) and (21) are given n=0,2, i=l,..., N (30) 

in the Appendix. They are composed of two different 
azimuthal contributions corresponding respectively to 

which involve calculation of radial and vertical inte- 

the angular modes n = 0 and 2. This suggests the need 
grals reported in the Appendix. 

to look for approximate solutions of equations (20) 
At third order in E, the equations are 

and (21) in the form 

02 = cos2rpJ,(k,r) f A,iY*i(z) 

;B*[(U,-V)U,+(U,*V)U,]+Rin(:)A,O, 

i- I = V4A,,@, - Ra”~“R(:)A,O, (3 1) 

+Jo(~o~) f AOi(z) yOi(z) (23) 
(U,*V)02+(U2*V)0, = V’&+A&). (32) 

i- I 

o* = cos2$?J,(k,r) f A*J&) 

The solvability conditions leads to the following 
expression for RI : 

i= I 

+Jo(kor) f AoiXoiW (24) 
k:d,,Rz = ~(g:,a.[(U,.V)U,+(U,.V)~,]) 

i= I 

with kz = 3.054 and k, = 3.832. 
+(e:,[(U,-V)O,+(U,-V)@,]) (33) 

The coefficients Azi and Aoi are determined using a or 

Gaierkin procedure and at this stage of the calculation 
the perturbative expansion technique becomes equi- k;d,,R2 = 2 A,&+ $ A?,$) (34) 

valent to a Galerkin method with the set of selected 
i= I i= I 

modes where 

S= (11,2i,Oi}, i= l,..., N. It) v)“d+(uni’v)u~~l) 
Using symmetry arguments it is sometimes possible 
to reduce the number of vertical modes to either i = 2 +<e:,[(u,l ‘V)O*i+(uj+*V)6,,])3 n = 032 (35) 
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factorizes in radial and vertica! integrals as shown in 
the Appendix. Finally Rz is expressed as the sum of 
N cont~butions 

R,=-&-fL c&‘a&’ 

, , , ,y do& (Ra"." - Ru".") 

Similar expressions have been derived previously also 
for fluid in a circular cylinder but with different sym- 
metrical properties than in the present case. Rosenblat 
[I I] considered ordinary liquid with a linear state 
equation and free upper and lower horizontal 
surfaces. In this physical situation it can be shown 
that: aA') = a:\'= 0, gi2) = -aif' (n= 0,2) as men- 
tioned in the Appendix. Since R&O > Rut'*" and 
ti,, > 0 it was found that R, > 0 leads to a super- 
critical bifurcation. This is the expected result when 
reflection symmetry with respect to the mid-height is 
present. Rosenblat et al. [I21 examined also the case 
of Marangoni convection where the reflection sym- 
metry is broken but they conclude that even in that 
case the bifurcation is supercritical for all Prandtl 
numbers. The principal difference with the present 
analysis is that previous works dealt with the case of 
moderate aspect ratio (R > h) while we are dealing 
with the opposite limit (h > R). Therefore, in the 
Galerkin formulation they considered a minimal set 
of modes with an elementary vertical structure cor- 
responding to I’ = 1 in the non-symmetrical case or 
i = 2 in the symmetrical case. Here we need to con- 
sider both the contributions due to i = 1 and 2. This 
is partially due to the fact that when the aspect ratio 
increases, the Rayleigh numbers at which two suc- 
cessive vertical modes destabilize become closer 
(Tables l-3) and the term {Rd”.“- Rn”.“) in the 
denominator of expression (37) can no longer act as 
a damping factor when i > 1. When there is no 
reflection symmetry and for moderate aspect ratio 
Rosenblat er al. [I21 calculated the contribution to 
i?, due to the first excited vertical mode (i = 1) and 
neglected the contribution of modes i 3 2. For large 
aspect ratio this approximation fails and we will see 
in the next section that the contribution due to i = 2 
is greater than that due to i = 1. 

5. NATURE OF THE BIFURCATION 

In this section we present the results of the cal- 
culation of A2 for three specific values of the aspect 
ratio i = 2,3,4. We can write R2 as a function of the 
Prandtl number Q 

5.1. Bifitrcarinn at 1 = 2 
Inspection of Table 4 where the values of R$,, 

R(?I{ and R!$ have been reported shows that the 

Table 4. Numerical values of R$. R(21\ and I?‘?‘{ for the aspect 
rlttio i. = 2 and diti’crent values of h 

fi i R’:’ I” R”’ 2, R”’ 22 

I I -0.727 0.421 -0.047 
3 1.012 3.018 1.802 
3 -0.013 0.079 0.029 

1.1 1 -- l.ljl 0.665 -0.074 
, 

5 
1.139 3.245 I .932 
0.010 0.145 0.054 

I.2 I - 1.8’9 1.055 -0.119 
1 

3 
1.‘9’ 
0.L 

3.538 2.062 
0.276 0.099 

1.5 I - 7.833 
1.50; 

4.522 -0.528 

5 
4.057 2.058 

0.253 0.729 0.190 

coefficients R’$ take positive values and that the con- 
tribution corresponding to i = 2 is larger than that 
corresponding to i = I for small values of p while the 
contrary is true for cl > 1.5. The contribution of the 
third vertical mode (i = 3) being an order of mag- 
nitude lower than the leading one will not be con- 
sidered in the following. The major contribution to 
R$\ comes from i = 2, the smaller contributions from 
i = 1 and 3 being neariy equal and of opposite sign. 
On Fig. I we have drawn the function Y_,(z) which is 
directly related to the vertical velocity profile and one 
can see that I;,, reaches its maximum value near the 
mid-height of the cylinder while Y,,? changes its sign 
at nearly the same point. Therefore, symmetry with 
respect to the mad-height of the cylinder is not com- 
pletely lost when a non-linear equation ofstate is used. 
This could explain why the major contribution to 
Ry\ and R$ comes from i = 2 like that for ordinary 
fluids fl I]. The behaviour of the term independent of 
the Prandtl number is quite different since the two 
contributions R$!j and R>: have opposite sign with 
R’$ < 0 and R\% > 0. For /L= I, IR\$l e R’,‘d lead- 
ing to R2 > 0 and thus the bifurcation is supercritical. 
For !L > 1.1, lRl’,l > R’,‘d and thus 

R,=R2.+~R2,+;R*~ (38) 

with RzO < 0. This means that for Prandtl numbers 
such that 

” -R2, -tvl(Ri, +4R,,IR,ol) 
(39) 

the bifurcation is subcritical. 

5.2. B~jkrcation at 2. = 3 and 4 
Inspection of Tables 5 and 6 shows that most of 

the remarks valid for E. = 2 remain qualitatively true 
for larger aspect ratios. Now the value of p at which 
the coef&ient RzO changes its sign is : 1.20 < p < 1.25 
for i = 3 and 1.3 < it < 1.4 for E. = 4. The vertical 
profiles Y,,(z) are drawn in Fig. 2 for the angular 
modes n = I,?. As p increases from I to 2 we observe 
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Table 5. Numerical values of R$, RQ’, and R’;\ for the aspect 
ratio ri = 3 and different values of n 

P i R”’ ?O R# R”’ 22 

I I -0.241 0.166 0.012 
2 0.430 1.335 0.614 

1.1 I - 0.368 0.242 0.016 
2 0.486 1.397 0.634 

1.2 : -0.540 0.347 0.019 
0.547 1.461 0.648 

1.25 1 -0.650 0.413 0.020 
2 0.577 1.492 0.653 

1.4 I -1.119 0.682 0.015 
2 0.648 1.589 0.65 I 

2 1 -6.767 3.713 0.353 
2 0.920 3.094 1.001 

Table 6. Numerical values of R($, R$ and R# for the aspect 
ratio i = 4 and different values of I( 

p i R’ib R’” ZI R$ 

I I -0.166 0.162 0.029 
2 0.311 0.842 0.333 

1.2 I -0.306 0.268 0.042 
2 0.374 0.89 I 0.341 

1.4 I -0.517 0.407 0.050 
2 0.436 0.985 0.358 

1.6 i -0.824 0.582 -&I% 
2 0.503 I.154 0.398 

1.8 I - I.245 0.803 0.034 
2 0.583 1.397 0.466 

2.0 : - 1.831 i.io2 0.042 
0.672 I.691 0.555 

that the convection tends to be stronger in the lower 
part of the cylinder and even for p = 2 a weak sec- 
ondary cell appears in the upper part. The presence 
of a small counter cell has already been quoted in 
infinite horizontal layers of water when /1 > 2 [I, 5, 

61. 
In the extended horizontal ice-water system, non- 

linear computations [S] indicate that convection first 
appears at finite amplitude for a value of the pene- 
tration parameter around fi = 1.8. The precise value 
of ,u could be determined as a function of the Prandtl 
number by the same kind of analysis developed in 
the present work, allowing a comparison with the 
carefully controlled experiments carried out in liquid 
helium [8]. 

To illustrate our results we have reported in Table 
7 the value of Rz for some values of I. and fl and two 
particular Prandtl numbers corresponding to water 
(a = 7) and to liquid helium (a = 0.78). In the range 
of values of p considered 01 < 2) we observe a change 
of sign of Rz for all of the aspect ratios I. = 2, 3,4 in 
the case of water. For liquid hehum the transition 
between super- and s&criticality occurs for a higher 
value of the penetration parameter g and even for 
i = 2,3 and p = 2 it has not been reached. 

Table 7. Values of R, as a function of ,i and fiu, for two 
particular Prandtl numbers corresponding to water (@ = 7) 

and liquid helium (a = 0.78) 

4. P Rz(H:G) R2tJHe) 

2 1.2 0.21 9.07 
I.5 -4.70 8.69 
2.0 -98.26 - 14.18 

3 i.2 0.31 3.63 
I.4 -0.018 3.98 
2.0 -4.88 3.94 

4 1.4 0.18 2.56 
1.6 0.03 2.92 
1.8 -0.205 3.37 
2.0 -0.64 3.26 

6. DISCUSSION 

The major result of this work is to show that occur- 
rence of subcritical bifurcation is not exclusively 
caused by the use of a non-linear equation of state as 
pointed out in ref. [4]. In a cylindrical column of 
water in the range of temperature where a parabolic 
equation of state holds, we have shown that the bifur- 
cation is always supercritical when the whole height of 
water is unstable (no penetrative convection). When 
there is penetration, the bifurcation can be subcritical 
if the depth of the stable layer lying above the 4’C 
isotherm exceeds a certain value which depends upon 
the aspect ratio of the cylinder. The vanishing of the 
first coefficient in the expansion of bifurcation pa- 
rameter (equation (17)) also occurs in the Tayior- 
Couette problem for which the following term in the 
expansion has been computed recently in the degener- 
ate case [14]. Azouni [9] reported on the existence of 
an hysteresis loop associated with an inverted bifur- 
cation for experiments in a cylindrical water layer of 
aspect ratio i z 4.5 with the top boundary maintained 
at 4’C. This result is surprising since in our theoretical 
model we found a normal bifurcation when the whole 
height is unstable, in agreement with previous studies 
in different geometry. This discrepancy can be attri- 
buted to the ex~~rnenta~ di~culty in estabiishing a 
uniform linear temperature gradient along the whole 
height of a tall cylinder. 
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APPENDIX 

Culculation ofz,$ (II = 0.2) 
Setting x, = k,r we first establish the following results: 

(II,,-vp,, =~(~~J~(.~,)Y,Dx,+F+(.~,)x,DY,] 

+ ~[~:J:(.~,)Y,Dx,+F_(x,)X,DY,] (~1) 

Q*(u,,*V)u,, =;*, 
k; 
TJ:(.~,)D(Y,~,)+F+(-Y,)Z,DYI 1 

I 642) 
where we have introduced the following notations : 

Z, = (D’-k;) Y. (A3) 

(A4) 

A =!z,?_<, n r ar Er i-l 

After multiplying equation (Al) by 0: and equation (A2) by 
d,$ and integrating over the volume of the cylinder one sees 

that integration over the radial variable involves two elemen- 
tary integrals 

a, = 
S’ 

J.(k,r)Ji(k,r)rdr, n = 0.2. (‘46) 
” 

After addition of the contributions from equations (Al) and 
(AZ) the quantity rc/ defined in equation (30) becomes 

1 
0, _ a* r,, - -- 

i[ 
k;X,+;X,DY,X.: 1 

+&m-(k;-g)m,j (A7) 

where the overbar means integration over the vertical 
variable. 

Calculation of*]:’ 
At third order in E the resonance terms in heat advection 

are 

(u,, *Vl@,,,+(u,,*V)6,, 

= ~cos(~[J,(x,)Jn(((n)(k: Y,Dx,, 

+k,‘Y,,DX,)-tF,,(r)(X,,DY,+X,DY,,)] (A8) 

where we have introduced the following notations: 

?J,(*,) Zl,(so) 
F‘Io(r) = 7 ___ ?r (A9) 

?J,(s,) SJ2(.v2) 
F,,(f) = __ 

c’r 
+2%,;i:(.r,), (AIO) 

Sr 

The resonant terms in momentum advection are 

6*](u,, ~w”,+(~“,~~‘)u,,l 

= &cosq:k;k:[D(Y, Y,,)A,(J,(s,)J,(s,)) 
- I 

+D(Y,Y;,+ Y;Y,,)J,(s,)J,(s,)] 

-F,,(r)[kiD( Y, Yi,)+kjD( Y’;Ym,)] 

-(Z,DY,,+Z,,DY,)A,F,.(r)~. (All) 

After multiplying equation (A8) by 07, and equation (Al I) 
by 47, and integrating over the volume of the cylinder one 
obtains 

1 

+~(X,DY:X,+Y.,(X:DX,-X,D?(:)) 1 

-(k;- z)z,D,,,). (A12) 

Comparison ofexpressions (A7) and (A12) shows that when 
the linear differential system is selfadjoint the quantities 1:’ 
and x!,” have opposite sign. 

TRANSITION ENTRE BIFURCATION SUPERCRITIQUE ET SOUSCRITIQUE EN 
CONVECTION PENETRANTE DANS UN CYLINDRE VERTICAL 

R&m&On considtre la stabilite dune colonne d’eau dans un cylindre vertical lorsque la temperature a 
la base du cylindre est maintenue a O’C et la temperature au sommet varie entre 4 et 8’C. L’analyse de la 
transition vers le regime convectif faiblement non lintaire montre que la bifurcation est soit supercritique 
soit sous-critique selon les valeurs prises par deux parametres: le rapport d’aspect du cylindre (hau- 
teurirayon) qui varie de 2 P 4, et le parametre de penetration p defini comme le rapport de la hauteur totale 
de fluide a la hauteur de l’isotherme 4’C. Pour une valeur donnee du rapport d’aspect, la bifurcation est 
super-critique lorsque toute la colonne est instable (p = I) et devient sous-critique au-dessus dune certaine 

valeur de p lorsqu’il y a penetration (p > I). 
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UBERGANG VON UNTERKRITISCHER Zu U~IWUT~SCHER GABELSTR~)MUNG 
BE1 DER KONVEKTION IN EINEM SENKRECHTEN ZYLINDER 

Zusammenfassung-Es wird die StabilitHt einer senkrechten zylindrischen Wassertiule untersucht, deren 
waagerechte untere Stimflache auf O’C gehalten wird, wahrend die Temperatur der oberen StirnRlche 
zwischen4 und 8’C variiert. Eine leicht nichtlineare analytische Untersuchung zeigt, daB die Gabelstrcimung 
entweder iiberkritisch oder unterkritisch ist-abhangig von zwei Parametem : dem Seitenverhriltnis des 
Zylinders (Hiihe/Radius), das zwischen 2 und 4 liegt, und dem Eindringparameter p, der als das Verhlltnis 
der gesamten HBhe zur Hbhe der 4’C-Isothermen definiert ist. Fur einen vorgegebenen Wert des Seiten- 
verhlltnisses ist die Gabelstriimung iiberkritisch, wenn die gesamte Hiihe instabil ist (I( = I), sie wird 

unterkritisch oberhalb eines ganz bestimmten Wertes von p. wenn p > 1 wird. 

I’IEPEXOJJ OT ~OXPHTH9ECKOtl K 3AICPHTH’IECKO~ EH9YPKAiJkIH lIPW 
lWOHMKAIO~E~ KOHBEKIJHH B BEPDiKAJIbHOM ~IU’NiH~E 

AmmwmR-wxJwlyeTcn XOR wxrmmafi ycroik4smocrb ecpTsranbHor0 ImJm&npE¶ccKoro noJJsHOrO 
cron6a. HB mimieii rpamfue raroporo nonuepx8maercr rebmcpa~ypa 0°C. a sta mepxxei ona inMew 

IETC~ OT 4 no 8°C. Amumz c peroat cna6oii s-etiocra norzsmaer, 9~0 61@p~auss naqzwacxn 
JIH~~ B 3arpmnwc~oi& ne6o B noxpsrrw~ccxoil o6- B 3amfcsibfocx1107 3Haqemiii zmyx napardm- 

pos:omiouIetnu BblCOTISll3JUWQa L ero pamiycy. 33~c~zmxwroca B npexenax OT 2 x0 4, a raxxe 
oapaMcrpanpo~o~eaar~o~x~ororaramourewae~blc~~ ~PaXBblCOTe,Ha XOTOpOfi 

pacnonaraexe x lnolepma, ~yloluaa 4°C. Ana -or0 3Haqeifm oniomemn nbtcom x 

pamiycy 6a~ypracw1 HBPHH~CTCI B 3arpTmeroti o6nacx-x. ~OrAaxmmcTb no n&i ~btco~c ~epnn 

yCr0h1~0CTb (,u = l), a cra~o~mc~ ~to~parwecxu~, rorm npoucxozuiT upouecc npouis~~oeca~a BOJ- 


